organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hai-Yan Chen,^a Yong-Cheng Lin,^a* L. L. P. Vrijmoed^b and E. B. Gareth Jones^c

^aSchool of Chemistry and Chemical Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, People's Republic of China, ^bDepartment of Biology and Chemistry, City University of Hong Kong, People's Republic of China, and ^cNational Center for Genetic Engineering and Biotechnology, Bangkok, Thailand

Correspondence e-mail: ceslyc@zsu.edu.cn

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.003 Å R factor = 0.036 wR factor = 0.097 Data-to-parameter ratio = 18.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 $\ensuremath{\mathbb{C}}$ 2006 International Union of Crystallography All rights reserved

(+)-Deacetylhexahydromycoepoxydiene

The title compound, $C_{14}H_{22}O_3$, was isolated from the ammonium formate/10% Pd—C-catalysed hydrogen-transfer reaction of mycoepoxydiene. In the reaction product, the stereochemistry of the chiral carbons C-1, C-6, C-7 and C-8 remains unchanged, and the conformation of the δ -lactone ring is a chair.

Comment

In recent years, published reviews clearly indicate the tremendous potential of marine microorganisms as a source of new pharmaceuticals (Pietra, 1997; Fusetani, 2000; Faulkner, 2002, and references therein). Our research has focused on the secondary metabolites of marine fungi on the South China Sea coast (Lin *et al.*, 2001).

Mycoepoxydiene was isolated from the solid-state fermentation of a rare fungus designated as OSF66617 (Cai *et al.*, 1999) and later from the liquid-state fermentation of a marine entophytic fungus (No. 1893) (Chen, 2003). The first asymmetric total synthesis of mycoepoxydiene has been accomplished (Takao *et al.*, 2004). Mycoepoxydiene has been found to show cytotoxicity toward human tumor cells *in vitro* (Takao *et al.*, 2004). We have prepared hexahydromycoepoxydiene by a catalytic hydrogenation reaction (Chen *et al.*, 2005). Now we report the crystal structure of the title compound, (I), which is the hexahydrodeoxy product of mycoepoxydiene by a catalytic hydrogen-transfer reaction.

The absolute configuration of mycoepoxydiene was confirmed by the asymmetric total synthesis (Takao *et al.*, 2004). In the synthesis of (I), the chiral C atoms were not involved except C12. Thus, (I) retained the R configuration at C1, C7 and C10, and the S configuration at C6 and C8 (Fig. 1).

Table 1 lists selected parameters for the title compound. The title compound contains no classical hydrogen bonds.

Experimental

A solution of mycoepoxydiene (0.1 mmol) and ammonium formate (0.60 mmol) in absolute methanol (10 ml) with 10% Pd-C (0.29 mg) was heated under reflux for 12 h (reaction monitorized by thin-layer

Received 19 September 2005 Accepted 16 January 2006

Figure 1

View of the title compound, (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level (Spek, 2003).

chromatography). The catalyst was filtered off, washed with fresh methanol, and recrystallized from acetonitrile (yield 90%); $[\alpha]^{20}_{D}$ +207° (c 0.027, MeOH).

Crystal data

$C_{14}H_{22}O_3$	Mo $K\alpha$ radiation
$M_r = 238.32$	Cell parameters from 999
Orthorhombic, $P2_12_12_1$	reflections
a = 6.8200 (12) Å	$\theta = 3.0-26.8^{\circ}$
b = 6.9277 (12) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 27.431 (5) Å	T = 273 (2) K
V = 1296.0 (4) Å ³	Block, colourless
Z = 4	$0.46 \times 0.40 \times 0.24 \text{ mm}$
$D_x = 1.221 \text{ Mg m}^{-3}$	

Data collection

Bruker SMART CCD area-detector	2831 independent reflections
diffractometer	2304 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.017$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.0^{\circ}$
(SADABS; Sheldrick, 1998)	$h = -4 \rightarrow 8$
$T_{\min} = 0.960, \ T_{\max} = 0.982$	$k = -8 \rightarrow 8$
6732 measured reflections	$l = -35 \rightarrow 30$

Refinement

Refinement on F^2 w $R[F^2 > 2\sigma(F^2)] = 0.036$ w $wR(F^2) = 0.097$ SS = 1.03(Δ 2831 reflections Δ 156 parameters Δ H-atom parameters constrained

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0731P)^{2} + 0.1042P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$

Table 1 Selected geometric parameters (Å, °).

O9-C1	1.4382 (19)	C10-C12	1.519 (2)
O9-C6	1.4420 (18)	C13-C12	1.511 (2)
O17-C15	1.200 (2)		
C1-O9-C6	107.05 (10)	O17-C15-C14	122.75 (15)
O17-C15-O16	117.76 (15)	O16-C15-C14	119.45 (15)
C1-C8-C7-C10	-154.06 (12)	C8-C7-C10-C12	-177.82 (13)
C6-C7-C10-O16	-175.15 (13)	C6-C7-C10-C12	62.48 (17)

The H atoms were initially refined with soft restraints to regularize their geometry, after which they were refined with riding constraints only: C-H = 0.96-0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT-Plus* (Bruker, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *enCIFer* (CCDC, 2004).

X-ray data were collected at the Instrumentation Analysis and Research Center of Sun Yat-sen (Zhongshan) University; the authors thank the staff for all their help and advice. Financial support from the China 863 plan (No. 2003AA624010) is gratefully acknowledged.

References

- Bruker, (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cai, P., McPhail, A. T., Krainer, E., Katz, B., Pearce, C., Boros, C., Caceres, B., Smith, D. & Houck, D. R. (1999). *Tetrahedron Lett.* 40, 1479–1482.
- CCDC (2004). *enCIFer*. Version 1.1. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.
- Chen, G. Y. (2003). PhD thesis, Sun Yat-sen (Zhongshan) University, Guangzhou, People's Republic of China.
- Chen, H. Y., Qi, P., Lin, Y. C., Chen, G. Y., Wang, L. & Vrijmoed, L. L. P. (2005). Zhongshan Daxue Xuebao, Ziran Kexueban, 44, 122–123. (In Chinese.)
- Faulkner, D. J. (2002). Nat. Prod. Rep. 19, 1-48.
- Fusetani, N. (2000). Drugs from the Sea, pp. 6-29. Basel: Karger.
- Lin, Y. C., Wu, X. Y., Feng, S., Jiang, G. C., Luo, J. H., Zhou, S. N., Vrijmoed, L. L. P., Jones, E. B. G., Krohn K., Steingroöver, K. & Zsila, F. (2001). J. Org. Chem. 66, 6252–6256.
- Pietra, F. (1997). Nat. Prod. Rep. 14, 453-464.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Takao, K., Yasui, H., Yamamoto, S., Sasaki, D., Kawasaki, S., Watanabe, G. & Tadano, K.(2004). J. Org. Chem. 69, 8789–8795.